牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
产生背景
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
牛顿迭代公式
设r是
的根,选取
作为r的初始近似值,过点
做曲线
的切线L,L的方程为
,求出L与x轴交点的横坐标
,称x为r的一次近似值。过点
做曲线
的切线,并求该切线与x轴交点的横坐标
,称
为r的二次近似值。重复以上过程,得r的近似值序列,其中,
称为r的
次近似值,上式称为。
用牛顿迭代法解非线性方程,是把非线性方程
线性化的一种近似方法。把
在点
的某邻域内展开成泰勒级数
,取其线性部分(即泰勒展开的前两项),并令其等于0,即
,以此作为非线性方程
的近似方程,若
,则其解为
, 这样,得到牛顿迭代法的一个迭代关系式:
。
已经证明,如果是连续的,并且待求的零点是孤立的,那么在零点周围存在一个区域,只要初始值位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。
军人在进攻时常采用交替掩护进攻的方式,若在数轴上的点表示A,B两人的位置,规定在前面的数大于后面的数,则是A>B,B>A交替出现。但现在假设军中有一个胆小鬼,同时大家又都很照顾他,每次冲锋都是让他跟在后面,每当前面的人占据一个新的位置,就把位置交给他,然后其他人再往前占领新的位置。也就是A始终在B的前面,A向前迈进,B跟上,A把自己的位置交给B(即执行B = A),然后A 再前进占领新的位置,B再跟上,直到占领所有的阵地,前进结束。像这种两个数一前一后逐步向某个位置逼近的方法称为迭代法。
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量
在可以用迭代算法解决的问题中,至少存在一个可直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析得出可用来结束迭代过程的条件。
示例
欧几里德算法
最经典的迭代算法是欧几里德算法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b)
证明:a可以表示成a = kb + r,则r = a mod b。假设d是a,b的一个公约数,则有 a%d==0,b%d==0,而r = a – kb,因此r%d==0 ,因此d是(b,a mod b)的公约数
同理,假设d 是(b,a mod b)的公约数,则 b%d==0,r%d==0 ,但是a = kb +r ,因此d也是(a,b)的公约数。
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。
欧几里德算法就是根据这个原理来做的,欧几里德算法又叫辗转相除法,它是一个反复迭代执行,直到余数等于0停止的步骤,这实际上是一个循环结构。其算法用C语言描述为:
int Gcd_2(int a,int b)/*欧几里德算法求a,b的最大公约数*/
{
if (a<=0 || b<=0)/*预防错误*/
return 0;
int temp;
while (b > 0)/*b总是表示较小的那个数,若不是则交换a,b的值*/
{
temp = a % b;/*迭代关系式*/
a = b;
b = temp;
}
return a;
}
从上面的程序我们可以看到a,b是迭代变量,迭代关系是temp = a % b;根据迭代关系我们可以由旧值推出新值,然后循环执a = b; b = temp;直到迭代过程结束(余数为0)。在这里a好比那个胆小鬼,总是从b手中接过位置,而b则是那个努力向前冲的先锋。
斐波那契数列
还有一个很典型的例子是斐波那契(Fibonacci)数列。斐波那契数列为:0、1、1、2、3、5、8、13、21、…,即 fib⑴=0; fib⑵=1;fib(n)=fib(n-1)+fib(n-2) (当n>2时)。
在n>2时,fib(n)总可以由fib(n-1)和fib(n-2)得到,由旧值递推出新值,这是一个典型的迭代关系,所以我们可以考虑迭代算法。
int Fib(int n) //斐波那契(Fibonacci)数列
{
if (n < 1)/*预防错误*/
return 0;
if (n == 1 || n == 2)/*特殊值,无需迭代*/
return 1;
int f1 = 1,f2 = 1,fn;/*迭代变量*/
int i;
for(i=3; i<=n; ++i)/*用i的值来限制迭代的次数*/
{
fn = f1 + f2; /*迭代关系式*/
f1 = f2;//f1和f2迭代前进,其中f2在f1的前面
f2 = fn;
}
return fn;
}
C语言代码
double func(double x) //函数
{
return x*x*x*x-3*x*x*x+1.5*x*x-4.0;
}
double func1(double x) //导函数
{
return 4*x*x*x-9*x*x+3*x;
}
int Newton(double *x,double precision,int maxcyc) //迭代次数
{
double x1,x0;
int k;
x0=*x;
for(k=0;k
{
if(func1(x0)==0.0)//若通过初值,函数返回值为0
{
printf("迭代过程中导数为0!//n");
return 0;
}
x1=x0-func(x0)/func1(x0);//进行牛顿迭代计算
if(fabs(x1-x0)
{
*x=x1; //返回结果
return 1;
}
else //未达到结束条件
x0=x1; //准备下一次迭代
}
printf("迭代次数超过预期!//n"); //迭代次数达到,仍没有达到精度
return 0;
}
int main()
{
double x,precision;
int maxcyc;
printf("输入初始迭代值x0:");
scanf("%lf",&x);
printf("输入最大迭代次数:");
scanf("%d",&maxcyc);
printf("迭代要求的精度:");
scanf("%lf",&precision);
if(Newton(&x,precision,maxcyc)==1) //若函数返回值为1
printf("该值附近的根为:%lf//n",x);
else //若函数返回值为0
printf("迭代失败!//n");
getch();
return 0;
}
matlab代码
定义函数
function y=f(x)
y=f(x);%函数f(x)的表达式
end
function z=h(x)
z=h(x);%函数h(x)的表达式
end
主程序
x=X;%迭代初值
i=0;%迭代次数计算
while i<= 100%迭代次数
x0=X-f(X)/h(X);%牛顿迭代格式
if abs(x0-X)>0.01;%收敛判断
X=x0;
else break
end
i=i+1;
end
fprintf('//n%s%.4f//t%s%d','X=',X,'i=',i) %输出结果
Python代码
Python代码以实例展示求解f(x) = (x-3)**3,f(x) = 0 的根。
def f(x):
return (x-3)**3 ’''定义f(x) = (x-3)**3'''
def fd(x):
return 3*((x-3)**2) ’''定义f'(x) = 3*((x-3)**2)
def newtonMethod(n,assum):
time = n
x = assum
Next = 0
A = f(x)
B = fd(x)
print('A = ' + str(A) + ',B = ' + str(B) + ',time = ' + str(time))
if f(x) == 0.0:
return time,x
else:
Next = x – A/B
print('Next x = '+ str(Next))
if A == f(Next): print('Meet f(x) = 0,x = ' + str(Next)) ’''设置迭代跳出条件,同时输出满足f(x) = 0的x值'''
else:
returnnewtonMethod(n+1,Next)
newtonMethod(0,4.0) ’''设置从0开始计数,x0 = 4.0'''
该文章由作者:【青姐】发布,本站仅提供存储、如有版权、错误、违法等相关信息请联系,本站会在1个工作日内进行整改,谢谢!