柯西—施瓦茨不等式(内积为连续函数)

柯西-施瓦茨不等式是一个在众多背景下都有应用的不等式,例如线性代数,数学分析,概率论,向量代数以及其他许多领域。它被认为是数学中最重要的不等式之一。此不等式最初于1821年被柯西提出,其积分形式在1859被布尼亚克夫斯基提出,而积分形式的现代证明则由施瓦兹于1888年给出。

简介

柯西—施瓦茨不等式

柯西-施瓦茨不等式是数学分析中经常要用到的一个不等式,在竞赛数学和

高等数学中也有广泛的应用,下面介绍它的三种证明方法,从而加深对该不等式的理解,利于教学。定理(柯西-施瓦茨不等式):若a1,a2,…,an和b1,b2,…,bn是任意实数,则有(nk=1∑akbk)2≤(nk=1∑ak2)(k=n1∑bk2)此外,如果有某个ai≠0,则上式中的等号当且仅当存在一个实数x使得对于每一个k=1,2,…,n都有akx+bk=0时成立。

证明1平方和绝不可能是负数,故对每一个实数x都有nk=1∑(akx+bk)2≥0其中,等号当且仅当每一项都等于0时成立。

数学上,柯西—施瓦茨不等式,又称施瓦茨不等式或柯西—布尼亚科夫斯基—施瓦茨不等式,是一条很多场合都用得上的不等式,例如线性代数的矢量,数学分析的无穷级数和乘积的积分,和概率论的方差和协方差。不等式以奥古斯丁·路易·柯西(AugustinLouisCauchy),赫尔曼·阿曼杜斯·施瓦茨(HermannAmandusSchwarz),和维克托·雅科夫列维奇·布尼亚科夫斯基(ВикторЯковлевичБуняковский)命名。

柯西—施瓦茨不等式说,若x和y是实或复内积空间的元素,那么

等式成立当且仅当x和y是线性相关。:

特例

对欧几里得空间Rn,有

对平方可积的复值函数,有

这两例可更一般化为赫尔德不等式。

在3维空间,有一个较强结果值得注意:原不等式可以增强至等式

该文章由作者:【博希莱】发布,本站仅提供存储、如有版权、错误、违法等相关信息请联系,本站会在1个工作日内进行整改,谢谢!

发表回复

登录后才能评论