谢尔宾斯基地毯(数学家谢尔宾斯基提出的分形图形)

谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形。谢尔宾斯基地毯和谢尔宾斯基三角形基本类似,不同之处在于谢尔宾斯基地毯采用的是正方形进行分形构造,而谢尔宾斯基三角形采用的等边三角形进行分形构造。谢尔宾斯基地毯它本身的一部分完全相似。减掉一块会破坏自相似性。

谢尔宾斯基地毯(数学家谢尔宾斯基提出的分形图形)

介提出者

谢尔宾斯基地毯是由瓦茨瓦夫·谢尔宾斯基于1916年提出的一种分形,是自相似集的一种。它的豪斯多夫维是 log 8/log 3 ≈ 1.8928。门格海绵是它在三维空间中的推广。

构造

谢尔宾斯基地毯的构造与谢尔宾斯基三角形相似,区别仅在于谢尔宾斯基地毯是以正方形而非等边三角形为基础的。将一个实心正方形划分为的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。如下图

谢尔宾斯基地毯可以由以下计算机程序构造:

Decides if a point at a specific location is filled or not.

@param x is the x coordinate of the point being checked

@param y is the y coordinate of the point being checked

@param width is the width of the Sierpinski Carpet being checked

@param height is the height of the Sierpinski Carpet being checked

@return 1 if it is to be filled or 0 if it is not

*/ int isSierpinskiCarpetPixelFilled(int x,int y,int width,int height)

{// base caseif (x<1)

{return 0;}

{/*If the grid was split in 9 parts, what part(x2,y2) would x,y fit into?*/

int x2 = x*3/width; // an integer from 0..2 inclusive

int y2 = y*3/height; // an integer from 0..2 inclusive

if (x2==1 && y2==1) // if in the centre squaure, it should be filled.return 1;/* offset x and y so it becomes bounded by 0..width/3 and 0..height/3and prepares for recursive callx-=x2*width/3;y-=y2*height/3}return isSierpinskiCarpetPixelFilled(x,y,width/3,height/3);

该文章由作者:【下北】发布,本站仅提供存储、如有版权、错误、违法等相关信息请联系,本站会在1个工作日内进行整改,谢谢!

发表回复

登录后才能评论