拓扑绝缘体(内部绝缘界面允许电荷移动的材料)

拓扑绝缘体是一种内部绝缘,界面允许电荷移动的材料。

在拓扑绝缘体的内部,电子能带结构和常规的绝缘体相似,其费米能级位于导带和价带之间。在拓扑绝缘体的表面存在一些特殊的量子态,这些量子态位于块体能带结构的带隙之中,从而允许导电。这些量子态可以用类似拓扑学中的亏格的整数表征,是拓扑序的一个特例。

简介

拓扑绝缘体是一种新的量子物质态,完全不同于传统意义上的“金属”和“绝缘体”。这种物质态的体电子态是有能隙的绝缘体,而其表面则是无能隙的金属态。

这种无能隙的表面金属态也完全不同于一般意义上的由于表面未饱和键或者是表面重构导致的表面态,拓扑绝缘体的表面金属态完全是由材料的体电子态的拓扑结构所决定,是由对称性所决定的,与表面的具体结构无关。也正是因为该表面金属态的出现是有对称性所决定的,它的存在非常稳定,基本不受到杂质与无序的影响。

性质

其体电子态为绝缘态,但是在其表面却有自旋相关的导电通道,这意味着拓扑绝缘体在自旋电子学有潜在的应用前景。另外,在一个超导体附近的拓扑绝缘体可以产生满足非阿贝尔(非对易)统计的激子,马拉约那费米子。由于非阿贝尔粒子的拓扑性质受对称性保护,不会由于微小扰动而使量子态退相干,从而导致导致计算错误,这使得拓扑绝缘体可以用于量子计算。

优点

拓扑绝缘体材料有着独特的优点:首先,这类材料是纯的化学相,非常稳定且容易合成;第二,这类材料表面态中只有一个狄拉克点存在,是最简单的强拓扑绝缘体,这种简单性为理论模型的研究提供了很好的平台;第三,也是非常吸引人的一点,该材料的体能隙是非常大的,特别是Bi2Se3,大约是0.3电子伏(等价于3600K),远远超出室温能量尺度,这也意味着有可能实现室温低能耗的自旋电子器件。

这些重要特征保证了拓扑绝缘体将有可能在未来的电子技术发展中获得重要的应用,有着巨大的应用潜力。寻找具有足够大的体能隙并且具有化学稳定性的强拓扑绝缘体材料,成为人们目前关注的重要焦点和难点。

研究

北京凝聚态物理国家实验室(筹)张海军博士、戴希研究员、方忠研究员所在的T03组在该研究方向上取得重要突破。他们与美国斯坦福大学的张守晟教授研究组深入合作,预言了一类新的强拓扑绝缘体材料系统(Bi2Se3、Bi2Te3、Sb2Te3)。他们从理论和计算上系统地探讨了这类材料成为强拓扑绝缘体的物理机制,给出了描述该狄拉克点的KP哈密顿量,并且计算了类APRES电子谱图。

这类拓扑绝缘体材料有着独特的优点:首先,这类材料是纯的化学相,非常稳定且容易合成;第二,这类材料表面态中只有一个狄拉克点存在,是最简单的强拓扑绝缘体,这种简单性为理论模型的研究提供了很好的平台;第三,也是非常吸引人的一点,该材料的体能隙是非常大的,特别是Bi2Se3,大约是0.3电子伏(等价于3600K),远远超出室温能量尺度,这也意味着有可能实现室温低能耗的自旋电子器件。本工作发表在英国的《自然—物理学》(Nature Physics 5438至442,2009)杂志上,得到了中国科学院、国家自然科学基金、国家重点基础研究发展计划和国际科技合作计划的支持。

在理论预言发表的同时,相关的实验工作也取得重要进展,证实了理论预言的正确性。其一,美国普林斯顿大学的MZHasan与RJCava教授在Bi2Se3中观察到了表面态狄拉克点的存在《自然—物理学》(Nature Physics,5,398,2009)。其二,方忠、戴希研究组又与斯坦福大学的ZXShen教授研究组合作,利用ARPES观察到了Bi2Te3材料中的表面单个狄拉克点《科学》(Science,2009,已接收)。

该文章由作者:【神奇先生】发布,本站仅提供存储、如有版权、错误、违法等相关信息请联系,本站会在1个工作日内进行整改,谢谢!

发表回复

登录后才能评论