卡方检验(假设检验方法)

卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。

基本原理

卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明理论值完全符合。

注意:卡方检验针对分类变量。

步骤

(1)提出原假设:

H0:总体X的分布函数为F(x)。

如果总体分布为离散型,则假设具体为

H0:总体X的分布律为P{X=xi}=pi,i=1,2,…

(2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取A1=(a0,a1],A2=(a1,a2],…,Ak=(ak-1,ak),其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5,而区间个数k不要太大也不要太小。

(3)把落入第i个小区间的Ai的样本值的个数记作fi,成为组频数(真实值),所有组频数之和f1+f2+…+fk等于样本容量n。

(4)当H0为真时,根据所假设的总体理论分布,可算出总体X的值落入第i个小区间Ai的概率pi,于是,npi就是落入第i个小区间Ai的样本值的理论频数(理论值)。

(5)当H0为真时,n次试验中样本值落入第i个小区间Ai的频率fi/n与概率pi应很接近,当H0不真时,则fi/n与pi相差很大。基于这种思想,皮尔逊引进如下检验统计量,在0假设成立的情况下服从自由度为k-1的卡方分布。

资料检验

(自由度df=(C-1)(R-1))行×列表资料的卡方检验用于多个率或多个构成比的比较。

1.专用公式:r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+…+Arc/nrnc)-1]

2.应用条件:要求每个格子中的理论频数T均大于5或1<T<5的格子数不超过总格子数的1/5。当有T<1或1<T<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行×列表资料卡方检验的应用条件。而多个率的两两比较可采用行X列表分割的办法。

列联表资料检验

同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。

1.R*C列联表的卡方检验:R*C列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。

2.2*2列联表的卡方检验:2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析,如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。

列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。

该文章由作者:【柴树藩】发布,本站仅提供存储、如有版权、错误、违法等相关信息请联系,本站会在1个工作日内进行整改,谢谢!

发表回复

登录后才能评论