太阳是怎么形成的?
太阳是在大约45.7亿年前在一个坍缩的氢分子云内形成。宇宙爆炸时,氢气凝结成巨大的云层,成为了众多信息的起源地,一部分的氢被释放,在银河系中漂浮。随着时间的推移,自由漂浮的氢开始集中并为太阳和太阳系的形成做铺垫。
太阳是怎么形成的?
太阳是太阳系的中心天体,占有太阳系总体质量的99.86%。太阳系中的八大行星、小行星、流星、彗星、外海王星天体以及星际尘埃等。
太阳是位于太阳系中心的恒星,它几乎是热等离子体与磁场交织着的一个理想球体。太阳直径大约是1392000千米,相当于地球直径的109倍。
太阳的质量大约四分之三为氢,剩下的几乎都是氦,另外还有少于2%的氧、碳、氖、铁和其他的重元素质量,采用核聚变的方式向太空释放光和热。
太阳是怎么诞生的
太阳是在大约45.7亿年前在一个坍缩的氢分子云内形成。宇宙爆炸时,氢气凝结成巨大的云层,成为了众多信息的起源地,一部分的氢被释放,在银河系中漂浮。随着时间的推移,自由漂浮的氢开始集中并为太阳和太阳系的形成做铺垫。太阳以及太阳系逐渐变为了分子云,由于自身重力的影响开始向内塌陷,过度高速旋转最终导致自己成为了一个巨大的圆盘,形成了气体球,在进一步的压缩过程中,原子在内部发生核聚变,因此太阳破壳而出。
太阳只是宇宙中一颗十分普通的恒星,但它却是太阳系的中心天体。太阳系中,包含我们的地球在内的八大行星、一些矮行星、彗星和其它无数的太阳系小天体,都在太阳的强大引力作用下环绕太阳运行。太阳系的疆域庞大,仅以冥王星为例,其运行轨道距离太阳就将近40个天文单位,也就是60亿千米之遥远,而实际上太阳系的范围还要数十倍于此。
太阳是怎么来的?
太阳系是四十六亿年前伴随着太阳的形成而形成的。太阳星云由于自身引力的作用而逐渐凝聚,渐渐形成了一个由多个天体按一定规律排列组成的天体系统。太阳系的成员包括一颗恒星、九大行星、至少六十三颗卫星、约一百万颗小行星、无数的彗星和星际物质等。太阳是银河系中一颗普通的恒星。根据恒星演化理论,太阳与其他大多数恒星一样,是从一团星际气体云中诞成的。这团气体云存在于约四十六亿年前,位于银河系的盘状结构中,离中心约25亿亿公里。其体积约为现在太阳的500万倍,主要成份是氢分子。这就是“太阳星云”。经历四十多万年的收缩凝聚,星云中心诞生了一颗恒星,它就是太阳。在太阳形成以后不久,残存在太阳周围的一些气体和尘埃,形成了围绕太阳旋转的行星和诸多小行星和彗星等其他太阳系天体,包括的地球和月亮。
太阳系九大行星与太阳的位置排列图。从左到右分别是太阳、水星、金星、地球、火星、木星、土星、天王星、海王星和冥王星。
太阳在浩瀚的宇宙中谈不上有什么特殊性。组成银河系的有大约两千亿颗恒星,而太阳只是其中中等大小的一颗。太阳已的年龄有五十亿岁,正处在它一生中的中年时期。作为太阳系的中心,地球上所有生物的生长都直接或间接地需要它所提供的光和热。太阳内核的温度高达摄氏一千五百万度,在那儿发生着氢-氦核聚变反应。核聚变反应每秒钟要消耗掉约五百万吨的物质,并转换成能量以光子的形式释放出来。这些光子从太阳中心到达太阳表面要花一百多万年。光子从太阳中心出发后先要经过辐射带,沿途在与原子微粒的碰撞丢失能量。随后要经过对流带,光子的能量被炽热的气体吸收,气体在对流中向表面传递能量。到达对流带边缘后,光子已经冷却到五千五百摄氏度了。我们所能直接看到的是位于太阳表面的光球层。光球层比较活跃,温度约为摄氏六千多度,属于比较“凉爽”部分。光球层上有一个个起伏的对流单元“米粒”。每个米粒的直径在一千六百公里左右,它们是一个个从太阳内部升上来的热气流的顶问。就是在不断的对流活动中,太阳每秒钟向宇宙空间释放着相当于一千亿个百万吨级核弹的能量。
太阳是怎么形成的?
太阳是在大约45.7亿年前在一个坍缩的氢分子云内形成。宇宙爆炸时,氢气凝结成巨大的云层,成为了众多信息的起源地,一部分的氢被释放,在银河系中漂浮。
随着时间的推移,自由漂浮的氢开始集中并为太阳和太阳系的形成做铺垫。
太阳目前正在穿越银河系内部边缘猎户臂的本地泡区中的本星际云。在距离地球17光年的距离内有50颗最邻近的恒星系(与太阳距离最近的恒星是称作比邻星的红矮星,大约4.2光年)。
太阳是一颗黄矮星(光谱为G2V),黄矮星的寿命大致为100亿年,目前太阳大约45.7亿岁。 在大约50至60亿年之后,太阳内部的氢元素几乎会全部消耗尽,太阳的核心将发生坍缩,导致温度上升,这一过程将一直持续到太阳开始把氦元素聚变成碳元素。
太阳怎么形成的,从哪里来?
根据天文学家们的说法,太阳中的氢伴随着宇宙大爆炸而生。换句话说,太阳和宇宙的其他部分同时诞生。在宇宙大爆炸时,这些氢凝结成巨大的云层,成为了众多星系的起源地。而一些氢被释放,开始漂浮于我们的银河系之中。
太阳上出现的C3级中等耀斑(在左上角的白色区域可见),一个太阳海啸(右上角可见波状的结构)和多个丝状的磁力线从恒星表面离开。
随着时间推移,在一些意外的推动下,这些自由漂浮的氢开始集中并为太阳和太阳系的形成埋下了伏笔。渐渐的,太阳和太阳系变成了由氢原子和氦原子以及尘埃组成的缓慢旋转的分子云,并在自身的重力影响下向内塌缩,加速旋转。它的过度高速旋转最终导致自己成为了一个巨大的圆盘。
相关知识
太阳系形成于45亿6800万年前的大型分子云的引力坍塌区域中。这个初始的元气可能有数光年大,并且诞生好几颗恒星。
由于是典型的分子云,其成分主要是氢与一些氦,还有前几代恒星融合的少量重元素。当这个区域将形成太阳系前,被称为前太阳星云,坍缩时因为角动量守恒,使它转动得越来越快。中心,集中了大部分的质量,成为比周围环绕的盘面越来越热的区域。
收缩的星云越转越快,它开始变得扁平,成为原行星盘,直径大约200AU,在中心是高温、高密度的原恒星。行星经由盘中的吸积形成,在尘埃和气体的引力相互吸引下,逐渐凝聚形成越来越大的天体。在太阳系的早期可能有数以百计的原行星,但因合并或摧毁,留下行星、矮行星和残余物构成的小天体。
硅酸盐和金属的熔点很高,只有它们能在内太阳系的温度下保持固体形态,这些物质最终组成了岩态行星,分别是水星、金星、地球和火星。
由于金属成分在原始太阳星云中只占据了一小部分,类地行星都没有发展得很大。冻结线在火星与木星之间的位置,巨行星(木星、土星、天王星和海王星)形成于冻结线的外侧,这里的温度很低,挥发物质能以固态形式存在。
这一区域的冰比组成类地行星的金属和硅酸盐更多,所以该区域的行星发育得很大,可以捕获大量的氢和氦,它们是太阳系中含量最丰富的元素。
太阳系中余下的那些不可能组成行星的物质聚集在小行星带、柯伊伯带和奥尔特云区域。尼斯模型解释了这些区域的形成原理,以及外侧的行星可能在形成后又受到各种复杂引力的作用才到了它们现有的位置。
该文章由作者:【超生培欲】发布,本站仅提供存储、如有版权、错误、违法等相关信息请联系,本站会在1个工作日内进行整改,谢谢!