诱导公式是指三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数的公式。诱导公式有六组共54个。公式一到公式五函数名未改变,公式六函数名发生改变。公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z)、﹣α、180°±α、360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,当k是偶数时,得到α的同名函数值,即函数名不改变;当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot;cot→tan(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
定义
由任意角化成锐角的公式,公式有五组。
公式
公式一设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
记忆
规律
公式一到公式五函数名未改变,公式六函数名发生改变。
公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan。(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
口诀
奇变偶不变,符号看象限。
注:奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
这十二字口诀的意思就是说:
第一象限内任何一个角的三角函数值都是“+”;
第二象限内只有正弦和余割是“+”,其余全部是“-”;
第三象限内只有正切和余切是“+”,其余函数是“-”;
第四象限内只有正割和余弦是“+”,其余全部是“-”。
一全正,二正弦,三双切,四余弦
意义
诱导公式是三角函数中最重要的公式体系之一,它是学生进行判定已知角的三角函数值的符号,判定已知角所在的象限,已知三角函数值求角及已知角求三角函数值等练习的重要依据.在教学中,对公式中的角α作了些处理,旨在使学生更好地发现这些公式之间的联系及适应范围,进而在练习中能灵活地选好公式,用好公式。
该文章由作者:【喵王】发布,本站仅提供存储、如有版权、错误、违法等相关信息请联系,本站会在1个工作日内进行整改,谢谢!